Data augmentation for support vector machines
نویسندگان
چکیده
منابع مشابه
Data Augmentation for Support Vector Machines
This paper presents a latent variable representation of regularized support vector machines (SVM’s) that enables EM, ECME or MCMC algorithms to provide parameter estimates. We verify our representation by demonstrating that minimizing the SVM optimality criterion together with the parameter regularization penalty is equivalent to finding the mode of a mean-variance mixture of normals pseudo-pos...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملInterpretable support vector machines for functional data
Support Vector Machines (SVM) has been shown to be a powerful nonparametric classification technique even for high-dimensional data. Although predictive ability is important, obtaining an easy-to-interpret classifier is also crucial in many applications. Linear SVM provides a classifier based on a linear score. In the case of functional data, the coefficient function that defines such linear sc...
متن کاملSupport vector machines for automatic data cleanup
Accurate training data plays a very important role in training effective acoustic models for speech recognition. In conversational speech, in several cases, the transcribed data has a significant word error rate which leads to bad acoustic models. In this paper we explore a method to automatically identify such mislabelled data in the context of a hybrid Support Vector Machine/hidden Markov mod...
متن کاملTraining Data Selection for Support Vector Machines
In recent years, support vector machines (SVMs) have become a popular tool for pattern recognition and machine learning. Training a SVM involves solving a constrained quadratic programming problem, which requires large memory and enormous amounts of training time for large-scale problems. In contrast, the SVM decision function is fully determined by a small subset of the training data, called s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2011
ISSN: 1936-0975
DOI: 10.1214/11-ba601